专利摘要:
A multifocal ophthalmic lens, having outer annular zones with vision correction powers less than a far vision correction power of the patient, is disclosed. These additional annular zones come into play, when the pupil size increases under dim lighting conditions, to thereby compensate for the near-vision powered annular zones. The net effect of the additional near vision annular zones and the additional annular zones having power less than the far vision correction power is to shift the best quality image from in front of the retina to an area on the retina of the eye, to thereby reduce halo effects and improve image contrast.
公开号:US20010008977A1
申请号:US09/792,893
申请日:2001-02-26
公开日:2001-07-19
发明作者:Valdemar Portney
申请人:Allergan Inc;
IPC主号:A61F2-1618
专利说明:
[0001] The present invention relates generally to ophthalmic lenses and, more particularly, to a multifocal ophthalmic lens adapted for implantation in an eye, such as an intraocular lens, or to be disposed in a cornea, such as a corneal inlay. [0001] BACKGROUND OF THE INVENTION
[0002] The general construction of a multifocal ophthalmic lens is known in the art. U.S. Pat. No. 5,225,858, which is incorporated herein by reference, discloses a multifocal ophthalmic lens including a central zone circumscribed by multiple concentric, annular zones. This patent discloses a means of providing improved image quality and light intensity for near images. The improved image quality is accomplished by maintaining the near vision correction power of appropriate zones of the lens substantially constant for a major segment of the near vision correction power region of each zone, and by providing a central zone having an increased depth of focus. [0002]
[0003] The major segment of each near vision correction power region, which has a substantially constant near vision correction power, inherently reduces the depth of focus associated with far vision. The location of near focus is typically immaterial for near vision, because of the ability of the user to easily adjust the working distance of the target object. The patent discloses progressive vision correction powers in the central zone for extending the depth of focus. The increased depth of focus provided by the central zone helps to compensate for the reduction in depth of focus associated with the near vision correction power regions. This feature is particularly applicable to an intraocular lens, since the patient has minimal residual accommodation, i.e., the ability of a normal eye to see objects at different distances. [0003]
[0004] FIG. 1 shows how the multifocal ophthalmic lens [0004] 6 of the prior art focuses parallel incoming light onto the retina 10 of the eye. For the normal lighting condition with a 3 mm pupil diameter, the rays 7 pass through a far focus region of the multifocal ophthalmic lens 6, and are focused onto the retina 10. The rays 8 pass through a near region of the multifocal ophthalmic lens 6, and are focused into a region between the retina 10 and the multifocal ophthalmic lens 6.
[0005] The multifocal ophthalmic lens [0005] 6 shown in FIG. 1 shows the passage of parallel rays through the multifocal ophthalmic lens 6 in a well-lit environment. In low lighting conditions, the pupil enlarges, and additional annular zones of the multifocal ophthalmic lens 6 become operative to pass light therethrough. These additional annular regions operate to provide additional far (rays 10 in FIG. 1) and near-focus corrective powers to the multifocal ophthalmic lens 6. Presence of the additional intermediate and near rays shift the best image quality for far vision to the location in front of the retina. As a result, in low lighting conditions the best quality image of the multifocal ophthalmic lens 6 appears in a region slightly in front of the retina 7. A user looking through the multifocal ophthalmic lens 6 while driving at night, for example, may notice an undesirable halo affect around a bright source of light. The shift in the best quality image just in front of the retina 7 instead of on the retina 7 increases the halo effect making driving for some people difficult.
[0006] A problem has thus existed in the prior art of providing a multifocal ophthalmic lens, which can provide a desirable far vision correction in low lighting conditions, but which does not unnecessarily elevate halos and contrast reductions under increased pupil size which usually occurs in low lighting conditions. Thus, the prior art has been unable to produce a multifocal ophthalmic lens, which achieves a best quality image on the retina (instead of slightly in front of the retina) in low lighting conditions. [0006]
[0007] Under low lighting conditions, the best quality image of prior art multifocal ophthalmic lenses is not focused on the retina of the eye. Instead, these prior art multifocal ophthalmic lenses have a best quality image in front of the retina in low lighting conditions, which corresponds to a mean power of the multifocal ophthalmic lens being slightly higher than the far vision correction power required for the patient. [0007] SUMMARY OF THE INVENTION
[0008] As light diminishes and pupil size correspondingly increases, the outer annular zones of a multifocal ophthalmic lens begin to pass light therethrough. These outer annular zones traditionally introduce additional near vision correction power, which effectively shifts the best quality image from on the retina to an area slightly in front of the retina. [0008]
[0009] The outer annular zones of the present invention have vision correction powers, which are less than the far vision correction power of the patient, to compensate for the increase in the mean power of the multifocal ophthalmic lens. A multifocal ophthalmic lens, having outer annular zones with vision correction powers less than a far vision power of the patient, is disclosed. The additional annular zone or zones come into play when the pupil size increases under dim lighting conditions, to thereby compensate for the additional near vision annular zones introduced by the enlarged pupil size. The net effect of the additional near vision annular zones and the additional annular zones having power less than the far vision correction power is to focus the best quality image onto the retina of the eye, to thereby reduce halo effects and improve contrast. [0009]
[0010] The multifocal ophthalmic lens of the present invention is adapted to be implanted into an eye or to be disposed in a cornea, and has a baseline diopter power for far vision correction of the patient. The multifocal ophthalmic lens includes a central zone having a mean vision correction power equivalent to or slightly greater than the baseline diopter power depending upon pupil size, and includes a first outer zone located radially outwardly of the central zone. [0010]
[0011] A second outer zone located radially outwardly of the first outer zone provides vision correction power, that is less than the baseline diopter power. The vision correction power of the second outer zone can be substantially constant. Light generally does not pass through the second outer zone under bright lighting conditions. [0011]
[0012] A third outer zone of the multifocal ophthalmic lens comes into play in lower lighting conditions, and includes a vision correction power greater than the baseline diopter power. A fourth outer zone circumscribes the third outer zone, and includes a vision correction power, that is less than the baseline diopter power. This fourth outer zone passes light in very low lighting conditions, when the pupil is significantly dilated. The second and fourth outer zones serve to focus light slightly behind the retina of the eye, to thereby compensate for light focused in front of the retina of the eye by the first and third outer zones, under dim lighting conditions. [0012] BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0013] FIG. 1 is a schematic view illustrating the focusing of light of a prior art multifocal ophthalmic lens onto a retina; [0013]
[0014] FIG. 2 is a plan view of an intraocular multifocal ophthalmic lens of the presently preferred embodiment; [0014]
[0015] FIG. 3 is a side elevational view of the intraocular multifocal ophthalmic lens of the presently preferred embodiment; [0015]
[0016] FIG. 4 is a plot of the power of the optic versus distance from the optic axis for the intraocular multifocal ophthalmic lens of the presently preferred embodiment; [0016]
[0017] FIG. 5 is a schematic view illustrating the focusing of light of the intraocular multifocal ophthalmic lens of the presently preferred embodiment onto a retina. [0017]
[0018] These and other aspects of the present invention are apparent in the following detailed description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numerals. [0018] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0019] FIGS. 2 and 3 show an intraocular lens [0019] 11, which comprises a circular optic 13 and two fixation members 15 and 17. The optic 13 may be constructed of rigid biocompatible materials, such as polymethylmethacrylate (PMMA), or flexible, deformable materials, such as silicone, hydrogel and the like which enable the optic to be rolled or folded for insertion through a small incision into the eye.
[0020] In the presently preferred embodiment, the fixation members [0020] 15 and 17 are fine hair-like strands or filaments which are attached to the optic 13 using conventional techniques. The fixation members 15 and 17 may be constructed of a suitable polymeric material, such as PMMA or polypropylene. Alternatively, the fixation members 15 and 17 may be integral with the optic 13. The optic 13 and the fixation members 15 and 17 may be of any desired number and configuration, and the configurations illustrated are purely illustrative.
[0021] The optic [0021] 13 has a central zone 18, inner and outer annular near zones 19 and 20, and an annular far zones 21 and 22. In the presently preferred embodiment, the central zone 18 is circular, and the peripheries of the annular zones 19-22 are circular. The annular zones 19-22 circumscribe the central zone 18, and the zones are contiguous. The zones 19-22 are concentric and coaxial with the optic 13.
[0022] The zones [0022] 18-22 are used in describing the vision correction power of the optic 13, and they are arbitrarily defined. Thus, the peripheries of the zones 18-22 and the number of zones may be selected as desired. However to facilitate describing the optic 13, the peripheries of the annular zones 19-22 are considered to be the zero crossings in FIG. 4. Although the boundaries of the zones 18-22 are indicated by phantom lines in FIG. 2, it should be understood that the optic 13 has no such lines in any of its surfaces and that these lines constitute reference lines which define the zones.
[0023] As shown in FIG. 3, the optic [0023] 13 has a convex anterior surface 25 and a planar posterior surface 27; however, these configurations are merely illustrative. Although the vision correction power may be placed on either of the surfaces 25 and 27, in the presently preferred embodiment, the anterior surface 25 is appropriately shaped to provide the desired vision correction powers.
[0024] FIG. 4 shows the preferred manner in which the vision correction power of the optic [0024] 13 varies from the center or optical axis 29 of the optic 13 to the circular outer periphery 31 of the optic. A preferred power distribution curve for a corneal inlay may be similar, or identical, to the curve of FIG. 4.
[0025] In FIG. 4, the vertical or “Y” axis represents the variation in diopter power of the optic [0025] 13 from the baseline or far vision correction power, and the “X” or horizontal axis shows the distance outwardly from the optical axis 29 in millimeters. Thus, the zero-diopter or baseline power of FIG. 4 is the power required for far vision for a conventional mono-focal intraocular lens. The power variation shown in FIG. 4 is applicable to any radial plane passing through the optical axis 29. In other words, the power at any given radial distance from the optical axis 29 is the same.
[0026] The central zone [0026] 18 extends from the optical axis 29 to a circular periphery 33, the first annular near zone 19 is considered as extending from the periphery 33 to a circular periphery 34, and the outer annular near zone 20 is considered as extending from a periphery 35 to a periphery 36. The negative diopter power of the two zones 21, 22 are of less power than required for far vision and may be considered as far, far vision correction powers. The annular far, far zone 21 extends between the peripheries 34 and 35, and the annular far, far zone 22 extends from the periphery 36 radially outwardly to the outer periphery 31 of the optic 13. As shown in FIG. 4, the vision correction power crosses the “X” axis or baseline at the peripheries 33, 34, 35 and 36.
[0027] As shown in FIG. 4, the vision correction power varies progressively and continuously from a baseline diopter power at the optical axis [0027] 29 to an apex 38 and then decreases continuously and progressively from the apex 38 back through the baseline diopter power to a negative diopter power at a point 39. From the point 39, the vision correction power increases continuously and progressively through the periphery 33 into the inner annular near zone 19. Of course, the diopters shown on the ordinate in FIG. 4 are merely exemplary, and the actual correction provided will vary with the prescription needs of the patient.
[0028] The apex [0028] 38 has a vision correction power for intermediate vision. The intermediate vision correction powers may be considered as being in a zone 40 which may be between 0.5 and 0.75 diopters from the baseline diopter power, as presently embodied. The far vision correction powers may be considered as lying between the zone 40 and the baseline diopter correction, and the far, far vision correction powers are negative. The intermediate, far, and far, far powers combine to provide a mean power in the central zone 18.
[0029] Within the inner annular near zone [0029] 19, the vision correction power varies continuously and progressively from the periphery 33 to a plateau 41; and from the plateau 41, the vision correction power varies continuously and progressively back to the periphery 34 at the baseline.
[0030] In the far, far zone [0030] 21 the vision correction power is below the far zone correction power, and is substantially constant. This vision correction power returns to the baseline at the periphery 35.
[0031] In the outer annular near zone [0031] 20, the power varies continuously and progressively from the periphery 35 to a plateau 45, and returns continuously and progressively from the plateau 45 to the baseline at the periphery 36.
[0032] In the far, far zone [0032] 22, the vision correction power is substantial constant, below the baseline vision correction power. The substantially constant vision correction power of the far, far zone 22 is slightly lower than the substantially constant vision correction power of the far, far zone 21, as presently embodied. The vision correction power of the far, far zone 22 remains negative from the periphery 36 to the baseline correction power at the outer periphery 31.
[0033] The inner near zone [0033] 19 has regions adjacent the peripheries 33 and 34 with far vision correction powers and a second region, which includes the plateau 41, with near vision correction powers. Similarly, the outer near zone 20 has regions adjacent the peripheries 35 and 36 with far vision correction powers and a second region, which includes the plateau 45, with near vision correction powers. For example, the near vision powers may be those which are above 2 or 2.5 diopters. The 2 to 2.5 diopters correspond to about 20 to 15 inches, respectively, of working distance, and this distance corresponds to the beginning of near activities. The two far, far vision correction plateaus 42, 43 of the two far, far annular zones 21, 22, respectively, preferably comprise diopter powers approximately one fifth of the distance between the baseline and the plateaus 41, 45, but located below the baseline.
[0034] As shown in FIG. 4, each of these “near” regions has a major segment, i.e., the plateaus [0034] 41 and 45 in which the near vision correction power is substantially constant. The plateau 41, which lies radially inwardly of the plateau 45, has a greater radial dimension than the plateau 45. The difference in radial dimension of the plateaus 41 and 45 allows these two plateaus to have approximately the same area.
[0035] Only a relatively small portion of the anterior surface [0035] 25 (FIG. 3) is dedicated to intermediate vision powers. This can be seen by the relatively small radial region which corresponds to the intermediate zone 40 (FIG. 4) and by the rapid change in diopter power between the plateaus 41 and 45 and the baseline diopter axis.
[0036] The diagrammatic view of FIG. 5 shows how the multifocal ophthalmic lens [0036] 13 of the present invention focuses parallel light onto a retina 10 of the eye, in dim lighting conditions. The parallel rays 50 pass through the central portion 18 of the multifocal ophthalmic lens 13, and are focused onto the retina 10. The rays 51 pass through the intermediate focus region 40 of the central zone 18, and are focused in an area between the retina 10 and the multifocal ophthalmic lens 13. The rays 52 pass through the plateau 41 of the near zone 19 and, depending upon the lighting conditions, pass through the plateaus 42, 43 of the two far, far zones 21, 22, and the plateau 45 of the near zone 20. These rays 52 are focused slightly behind the retina 10. In the presently preferred embodiment, the distance at which the rays 52 are focused behind the retina 10, is approximately one-fifth of the distance at which the rays 51 are focused in front of the retina 10. The combination of the rays 50, 51, and 52 combine to form a best quality image on the retina 10 in dim lighting conditions.
[0037] While this invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the following claims. [0037]
权利要求:
Claims (20)
[1" id="US-20010008977-A1-CLM-00001] 1. A multifocal ophthalmic lens for providing vision correction powers, the multifocal ophthalmic lens being adapted to be implanted in an eye or to be disposed in a cornea and having a baseline diopter power for far vision correction, the multifocal ophthalmic lens comprising:
a central zone having a vision correction power approximately equal to or greater than the baseline diopter power;
a first outer zone located radially outwardly of the central zone and having a vision correction power greater than the baseline diopter power; and
a second outer zone located radially outwardly of the first outer zone and having mean diopter power, which is less than the baseline diopter power.
[2" id="US-20010008977-A1-CLM-00002] 2. The multifocal ophthalmic lens according to
claim 1 , wherein the central zone has a progressive power region in which the vision correction powers vary progressively and in radially outwardly extending order from a far vision correction power, to an intermediate vision correction power, to a far vision correction power, and then to a diopter power which is less than the baseline diopter power.
[3" id="US-20010008977-A1-CLM-00003] 3. The multifocal ophthalmic lens according to
claim 2 , wherein the first outer zone is contiguous with the central zone and has a far vision correction power adjacent the central zone and a region having a near vision correction power, the vision correction power of the first outer zone between the far and near vision correction powers being progressive.
[4" id="US-20010008977-A1-CLM-00004] 4. The multifocal ophthalmic lens according to
claim 3 , wherein the first outer zone is annular and circumscribes the central zone.
[5" id="US-20010008977-A1-CLM-00005] 5. The multifocal ophthalmic lens according to
claim 4 , further comprising a third outer zone circumscribing the second outer zone, and
wherein the third outer zone is contiguous with the second outer zone and has a far vision correction power adjacent the second outer zone and a region having a near vision correction power, the vision correction power of the third outer zone between the far and near vision correction powers being progressive.
[6" id="US-20010008977-A1-CLM-00006] 6. The multifocal ophthalmic lens according to
claim 5 , further comprising a fourth outer zone circumscribing the third outer zone, and wherein the fourth outer zone has a substantially constant vision correction power, which is less than the baseline diopter power.
[7" id="US-20010008977-A1-CLM-00007] 7. The multifocal ophthalmic lens according to
claim 6 , wherein a mean vision correction power of the multifocal ophthalmic lens is approximately equal to the baseline diopter power.
[8" id="US-20010008977-A1-CLM-00008] 8. The multifocal ophthalmic lens according to
claim 7 , wherein the near vision correction power of the first outer zone is approximately equal in magnitude to the near vision correction power of the third outer zone.
[9" id="US-20010008977-A1-CLM-00009] 9. A multifocal ophthalmic lens for providing vision correction power, the multifocal ophthalmic lens being adapted to be implanted in an eye or to be disposed in a cornea and having a baseline diopter power for far vision correction, the multifocal ophthalmic lens comprising:
an optical axis;
a first annular zone located radially outwardly of the optical axis and having a vision correction power greater than the baseline diopter power; and
a second annular zone located radially outwardly of the first annular zone and having a substantially constant vision correction power, which is less than the baseline diopter power.
[10" id="US-20010008977-A1-CLM-00010] 10. The multifocal ophthalmic lens according to
claim 9 , wherein the first annular zone has a far vision correction power and a near vision correction power, the vision correction power of the first outer zone between the far and near vision correction powers being progressive.
[11" id="US-20010008977-A1-CLM-00011] 11. The multifocal ophthalmic lens according to
claim 10 , wherein the second annular zone has a far vision correction power in addition to the substantially constant vision correction power, the vision correction power of the second annular zone between the far and substantially constant vision correction powers being progressive.
[12" id="US-20010008977-A1-CLM-00012] 12. The multifocal ophthalmic lens according to
claim 11 , wherein the second annular zone comprises an inner annular far vision correction power, an intermediate annular vision correction power less than the baseline diopter power, and an outer annular far vision correction power.
[13" id="US-20010008977-A1-CLM-00013] 13. The multifocal ophthalmic lens according to
claim 12 , further comprising a third annular zone having an inner annular far vision correction power, an intermediate annular near vision correction power, and an outer annular far vision correction power.
[14" id="US-20010008977-A1-CLM-00014] 14. The multifocal ophthalmic lens according to
claim 13 , further comprising a forth annular zone having an inner annular far vision correction power, an intermediate annular vision correction power less than the baseline diopter power, and an outer annular far vision correction power.
[15" id="US-20010008977-A1-CLM-00015] 15. A multifocal ophthalmic lens for providing vision correction power, the multifocal ophthalmic lens being adapted to be implanted in an eye or to be disposed in a cornea, and comprising:
a first annular zone having a near vision correction power; and
a second annular zone circumscribing the first annular zone and having a substantially constant vision correction power, which is less than a far vision correction power.
[16" id="US-20010008977-A1-CLM-00016] 16. A multifocal ophthalmic lens for providing vision correction power and adapted to be implanted in an eye or to be disposed in a cornea, the multifocal ophthalmic lens comprising:
a central zone having a visual correction power, which is greater than a baseline diopter of the multifocal ophthalmic lens; and
an annular zone circumscribing the central zone and having a substantially constant vision correction power, which is less than the baseline diopter power.
[17" id="US-20010008977-A1-CLM-00017] 17. A multifocal ophthalmic lens for providing vision correction power and adapted to be implanted in an eye or to be disposed in a cornea, the multifocal ophthalmic lens comprising:
a central zone having a visual correction power for focusing light a first distance in front of a retina of the eye; and
an annular zone circumscribing the central zone for focusing light approximately 20% of the first distance behind the retina of the eye.
[18" id="US-20010008977-A1-CLM-00018] 18. The multifocal ophthalmic lens according to
claim 17 , wherein light passes through the annular zone and is focused, approximately 20% of the first distance behind the retina of the eye, in dim lighting conditions.
[19" id="US-20010008977-A1-CLM-00019] 19. A multifocal ophthalmic lens for providing vision correction power, the multifocal ophthalmic lens being adapted to be implanted in an eye or to be disposed in a cornea, and comprising:
a first annular zone with a near vision correction power;
a second annular zone, circumscribing the first annular zone, with a vision correction power that is less than a far vision correction power; and
a third annular zone, circumscribing the second annular zone, with a near vision correction power having a magnitude approximately equal to a magnitude of the near vision correction of the first annular zone.
[20" id="US-20010008977-A1-CLM-00020] 20. The multifocal ophthalmic lens according to
claim 19 , wherein the magnitude of the near vision correction power of the first annular zone, relative to the far vision correction power, is approximately five times a magnitude of the vision correction power of the second annular zone, relative to the far vision correction power.
类似技术:
公开号 | 公开日 | 专利标题
US6221105B1|2001-04-24|Multifocal ophthalmic lens
JP2935750B2|1999-08-16|Multifocal artificial eye lens
US6210005B1|2001-04-03|Multifocal ophthalmic lens with reduced halo size
US6126286A|2000-10-03|Enhanced monofocal ophthalmic lens
US6197057B1|2001-03-06|Lens conversion system for teledioptic or difractive configurations
US6554859B1|2003-04-29|Accommodating, reduced ADD power multifocal intraocular lenses
US7341599B1|2008-03-11|Intraocular lens for correcting presbyopia
US6790232B1|2004-09-14|Multifocal phakic intraocular lens
US20030014107A1|2003-01-16|Multifocal phakic intraocular lens
KR20090015117A|2009-02-11|Means for controlling the progression of myopia
KR20100017520A|2010-02-16|Iol peripheral surface designs to reduce negative dysphotopsia
US20050288784A1|2005-12-29|Bifocal intraocular telescope for low vision correction
KR20100021423A|2010-02-24|Iol peripheral surface designs to reduce negative dysphotopsia
US20040167623A1|2004-08-26|Teledioptic lens system and method for using the same
CA2407902A1|2001-11-08|Ophthalmic lens systems
JPH0678942A|1994-03-22|Intraocular implant, method for correction of shortsightedness by using said implant and preparation of said implant
US6719792B2|2004-04-13|Implant for the correction of presbyopia in phakic eyes
US5147393A|1992-09-15|Bifocal intraocular lens with correction for spherical abberation
Mathen0|Multifocal IOL
同族专利:
公开号 | 公开日
EP0883385B1|2003-04-09|
DE69720696D1|2003-05-15|
US6576011B2|2003-06-10|
US5919229A|1999-07-06|
WO1997026843A1|1997-07-31|
EP0883385A2|1998-12-16|
US6221105B1|2001-04-24|
JP2000509289A|2000-07-25|
DE69720696T2|2003-12-18|
US5702440A|1997-12-30|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US20100069915A1|2005-01-31|2010-03-18|Yichieh Shiuey|Corneal implants and methods and systems for placement|
EP1845897A4|2005-01-31|2012-04-18|Yichieh Shiuey|Corneal implants and methods and systems for placement|
US10675145B2|2010-09-30|2020-06-09|KeraMed, Inc.|Corneal implants|US25286A||1859-08-30||Rotary planing-cutter |
USRE25286E||1962-11-13||Bifocal corneal contact lens |
CA59395A|1898-03-12|1898-03-23|William Boden|Waggon|
CA159395A|1914-04-08|1914-12-08|Henry O. Gowlland|Multi-focal lens|
US1483509A|1921-05-05|1924-02-12|Franklin Optical Company|Process of making fused bifocal lenses|
US2129305A|1936-08-21|1938-09-06|Feinbloom William|Contact lens|
US2274142A|1940-01-15|1942-02-24|Revalens Co|Multifocal ophthalmic lens|
US2405989A|1941-08-12|1946-08-20|Beach Lens Corp|Lens|
US2511517A|1947-01-31|1950-06-13|Bell & Howell Co|Method of producing optical glass of varied refractive index|
US3004470A|1956-07-28|1961-10-17|Zeiss Ikon A G Stuttgart|Multiple focal length lens|
US3031927A|1958-03-03|1962-05-01|Plastic Contact Lens Company|Bifocal corneal contact lens|
US3034403A|1959-04-03|1962-05-15|Neefe Hamilton Res Company|Contact lens of apparent variable light absorption|
DE1144051B|1960-12-09|1963-02-21|Daimler Benz Ag|Rotary piston internal combustion engine in trochoid design|
DE1158281B|1961-08-03|1963-11-28|Wilhelm Peter Soehnges|Corneal contact lens|
US3227507A|1961-08-16|1966-01-04|Feinbloom William|Corneal contact lens having inner ellipsoidal surface|
US3339997A|1962-07-30|1967-09-05|Plastic Contact Lens Company|Bifocal ophthalmic lens having different color distance and near vision zones|
US3210894A|1962-08-13|1965-10-12|Kollmorgen Corp|Method of producing aspheric surfaces on mirrors or lenses|
US3420006A|1964-01-27|1969-01-07|Howard J Barnett|Apparatus for grinding multifocal lens|
US3431327A|1964-08-31|1969-03-04|George F Tsuetaki|Method of making a bifocal contact lens with an embedded metal weight|
US3482906A|1965-10-04|1969-12-09|David Volk|Aspheric corneal contact lens series|
US3542461A|1967-11-20|1970-11-24|Du Pont|Contact lens having an index of refraction approximating that of human tears|
FR2097216A5|1970-05-27|1972-03-03|Anvar||
US4055378A|1971-12-31|1977-10-25|Agfa-Gevaert Aktiengesellschaft|Silicone contact lens with hydrophilic surface treatment|
US3794414A|1972-05-12|1974-02-26|Jessen Inc Wesley|Multiple focal contact lens|
CA1012392A|1973-08-16|1977-06-21|American Optical Corporation|Progressive power ophthalmic lens|
US3932148A|1975-01-21|1976-01-13|Criterion Manufacturing Company, Inc.|Method and apparatus for making complex aspheric optical surfaces|
DE2610203C3|1976-03-11|1988-07-28|Optische Werke G. Rodenstock, 8000 Muenchen, De||
US4073579A|1976-06-09|1978-02-14|American Optical Corporation|Ophthalmic lens with locally variable index of refraction and method of making same|
DE2702117A1|1977-01-20|1978-07-27|Soehnges Optik|Loose-seat contact lens - has surface structures on securing surface against corneal surface formed by moulding|
US4338005A|1978-12-18|1982-07-06|Cohen Allen L|Multifocal phase place|
US4340283A|1978-12-18|1982-07-20|Cohen Allen L|Phase shift multifocal zone plate|
US4210391A|1977-09-14|1980-07-01|Cohen Allen L|Multifocal zone plate|
US4195919A|1977-10-31|1980-04-01|Shelton William A|Contact lens with reduced spherical aberration for aphakic eyes|
DE2814916C3|1978-04-06|1982-01-07|Optische Werke G. Rodenstock, 8000 München|Spectacle lens with a progression area located between the far part and the near part|
US4199231A|1978-08-21|1980-04-22|Evans Carl H|Hydrogel contact lens|
US4274717A|1979-05-18|1981-06-23|Younger Manufacturing Company|Ophthalmic progressive power lens and method of making same|
JPS5942286B2|1979-08-24|1984-10-13|Suwa Seikosha Kk||
US4418991A|1979-09-24|1983-12-06|Breger Joseph L|Presbyopic contact lens|
US4307945A|1980-02-14|1981-12-29|Itek Corporation|Progressively varying focal power opthalmic lens|
US4377329A|1980-02-26|1983-03-22|Stanley Poler|Contact lens or the like|
US4346482A|1981-01-22|1982-08-31|Tennant Jerald L|Living contact lens|
US4402579A|1981-07-29|1983-09-06|Lynell Medical Technology Inc.|Contact-lens construction|
DE3222099C2|1982-06-11|1984-06-20|Titmus Eurocon Kontaktlinsen Gmbh & Co Kg, 8750 Aschaffenburg|Bifocal contact lens of the bivisual type|
US4504982A|1982-08-05|1985-03-19|Optical Radiation Corporation|Aspheric intraocular lens|
US4573775A|1982-08-19|1986-03-04|Vistakon, Inc.|Bifocal contact lens|
DE3374446D1|1982-09-29|1987-12-17|Pilkington Brothers Plc|Improvements in or relating to ophthalmic lenses|
US4890913A|1982-10-13|1990-01-02|Carle John T De|Zoned multi-focal contact lens|
DE3381691D1|1982-10-13|1990-08-02|Ng Trustees & Nominees Ltd|BIFOCAL CONTACT LENSES.|
EP0109753B1|1982-10-27|1988-07-27|Pilkington Plc|Bifocal contact lens comprising a plurality of concentric zones|
US4580882A|1983-04-21|1986-04-08|Benjamin Nuchman|Continuously variable contact lens|
US4618229A|1983-07-22|1986-10-21|Bausch & Lomb Incorporated|Bifocal contact lens|
DE3332313A1|1983-09-07|1985-04-04|Titmus Eurocon Kontaktlinsen GmbH, 8750 Aschaffenburg|MULTIFOCAL, ESPECIALLY BIFOCAL, INTRAOCULAR ARTIFICIAL EYE LENS|
GB2146791B|1983-09-16|1987-01-28|Suwa Seikosha Kk|Progressive multifocal ophthalmic lens|
US4636049A|1983-09-20|1987-01-13|University Optical Products Co.|Concentric bifocal contact lens|
US4568589A|1983-10-06|1986-02-04|Illinois Tool Works Inc.|Patch and method of repairing discontinuities in work surfaces|
US4596578A|1984-01-30|1986-06-24|Kelman Charles D|Intraocular lens with miniature optic|
US4636211A|1984-03-13|1987-01-13|Nielsen J Mchenry|Bifocal intra-ocular lens|
US4635049A|1984-06-27|1987-01-06|Tektronix, Inc.|Apparatus for presenting image information for display graphically|
US4720286A|1984-07-20|1988-01-19|Bailey Kelvin E|Multifocus intraocular lens|
FI79619C|1984-12-31|1990-01-10|Antti Vannas|Intraocular lens|
US4759762A|1985-03-08|1988-07-26|Grendahl Dennis T|Accommodating lens|
US4693572A|1985-06-03|1987-09-15|Fused Kontacts Of Chicago, Inc.|Monocentric bifocal corneal contact lens|
EP0227653A1|1985-06-24|1987-07-08|BRONSTEIN, Leonard|Contact lens|
US4752123A|1985-11-19|1988-06-21|University Optical Products Co.|Concentric bifocal contact lens with two distance power regions|
US4890912A|1986-01-24|1990-01-02|Rients Visser|Trifocal eye-contact lens|
GB2192291B|1986-03-04|1990-08-22|Gupta Anil K|Progressive power contact lens.|
EP0248489A3|1986-06-02|1989-09-06|Gregory N. Miller|Contact lens and method of making same|
WO1987007496A1|1986-06-05|1987-12-17|Precision-Cosmet Co., Inc.|One-piece bifocal intraocular lens construction|
US4983181A|1986-10-16|1991-01-08|Cbs Lens,|Collagen hydrogel for promoting epithelial cell growth and artificial lens using the same|
US4898461A|1987-06-01|1990-02-06|Valdemar Portney|Multifocal ophthalmic lens|
US5225858A|1987-06-01|1993-07-06|Valdemar Portney|Multifocal ophthalmic lens|
US5270744A|1987-06-01|1993-12-14|Valdemar Portney|Multifocal ophthalmic lens|
US5166711A|1987-06-01|1992-11-24|Valdemar Portney|Multifocal ophthalmic lens|
US5019099A|1987-07-02|1991-05-28|Nordan Lee T|Intraocular multifocal lens method for correcting the aphakic eye|
US4769033A|1987-07-02|1988-09-06|Nordan Lee T|Intraocular multifocal lens|
US4917681A|1987-08-24|1990-04-17|Nordan Lee T|Intraocular multifocal lens|
US4919663A|1987-08-24|1990-04-24|Grendahl Dennis T|Laminated zone of focus artificial hydrogel lens|
US4795462A|1987-08-24|1989-01-03|Grendahl Dennis T|Cylindrically segmented zone of focus artificial lens|
US4906246A|1987-08-24|1990-03-06|Grendahl Dennis T|Cylindrically segmented zone of focus artificial hydrogel lens|
US4921496A|1987-08-24|1990-05-01|Grendahl Dennis T|Radially segemented zone of focus artificial hydrogel lens|
US5158572A|1987-09-10|1992-10-27|Nielsen James Mchenry|Multifocal intraocular lens|
US4881804A|1987-11-12|1989-11-21|Cohen Allen L|Multifocal phase plate with a pure refractive portion|
US5000559A|1988-02-29|1991-03-19|Nikon Corporation|Ophthalmic lenses having progressively variable refracting power|
CA1316728C|1988-04-01|1993-04-27|Michael J. Simpson|Multi-focal diffractive ophthalmic lenses|
US5089024A|1988-04-19|1992-02-18|Storz Instrument Company|Multi-focal intraocular lens|
IT1217703B|1988-05-24|1990-03-30|Mario Giovanzana|MULTIFOCAL CONTACT LENS WITH PROGRESSIVE ECCENTRICITY AND PROCEDURE FOR ITS MANUFACTURE|
US4923296A|1988-07-14|1990-05-08|Erickson Paul M|Oriented simultaneous vision bifocal contact lenses or the like utilizing introaocular suppression of blur|
EP0351471B1|1988-07-20|1996-01-31|Allen L. Dr. Cohen|Multifocal diffractive optical device|
US4928583A|1988-07-22|1990-05-29|Taylor Harry L|Air flow control system|
US5192317A|1988-07-26|1993-03-09|Irvin Kalb|Multi focal intra-ocular lens|
US5139519A|1988-07-26|1992-08-18|Kalb Irvin M|Multi-focal intra-ocular lens|
US4830481A|1988-08-12|1989-05-16|Minnesota Mining And Manufacturing Company|Multifocal diffractive lens|
FR2642854B1|1989-02-03|1991-05-03|Essilor Int|OPTICAL LENS WITH SIMULTANEOUS VISION FOR PRESBYTIA CORRECTION|
FR2648702B1|1989-06-23|1994-04-22|Hanna Khalil||
US5002382A|1989-12-07|1991-03-26|Leonard Seidner|Multifocal corneal contact lenses|
US5096285A|1990-05-14|1992-03-17|Iolab Corporation|Multifocal multizone diffractive ophthalmic lenses|
US5112351A|1990-10-12|1992-05-12|Ioptex Research Inc.|Multifocal intraocular lenses|
US5682223A|1995-05-04|1997-10-28|Johnson & Johnson Vision Products, Inc.|Multifocal lens designs with intermediate optical powers|TW532488U|1998-02-11|2003-05-11|Euro Lens Technology S P A|A progressive multifocal contact lens suitable for compensating presbyopia|
JP2002522803A|1998-08-06|2002-07-23|ジョンビーダブリュー レット|Multifocal aspheric lens|
CA2351435A1|1998-12-16|2000-06-22|William Rovani|Multifocal contact lens with aspheric surface|
WO2000052516A2|1999-03-01|2000-09-08|Boston Innovative Optics, Inc.|System and method for increasing the depth of focus of the human eye|
US6790232B1|1999-04-30|2004-09-14|Advanced Medical Optics, Inc.|Multifocal phakic intraocular lens|
US20060238702A1|1999-04-30|2006-10-26|Advanced Medical Optics, Inc.|Ophthalmic lens combinations|
US6406494B1|1999-04-30|2002-06-18|Allergan Sales, Inc.|Moveable intraocular lens|
US6280471B1|1999-09-16|2001-08-28|Gholam A. Peyman|Glare-free intraocular lens and method for using the same|
US6277146B1|1999-09-16|2001-08-21|Gholam A. Peyman|Glare-free intraocular lens and method for using the same|
US6364483B1|2000-02-22|2002-04-02|Holo Or Ltd.|Simultaneous multifocal contact lens and method of utilizing same for treating visual disorders|
US6554859B1|2000-05-03|2003-04-29|Advanced Medical Optics, Inc.|Accommodating, reduced ADD power multifocal intraocular lenses|
US6547822B1|2000-05-03|2003-04-15|Advanced Medical Optics, Inc.|Opthalmic lens systems|
US6666887B1|2000-10-20|2003-12-23|Thinoptx, Inc.|Deformable intraocular multi-focus lens|
US6576012B2|2001-03-28|2003-06-10|Advanced Medical Optics, Inc.|Binocular lens systems|
US6638305B2|2001-05-15|2003-10-28|Advanced Medical Optics, Inc.|Monofocal intraocular lens convertible to multifocal intraocular lens|
EP1416889A4|2001-07-17|2009-07-01|Thinoptx Inc|Small incision lens and method of use thereof|
US7763069B2|2002-01-14|2010-07-27|Abbott Medical Optics Inc.|Accommodating intraocular lens with outer support structure|
US7662180B2|2002-12-05|2010-02-16|Abbott Medical Optics Inc.|Accommodating intraocular lens and method of manufacture thereof|
US7628810B2|2003-05-28|2009-12-08|Acufocus, Inc.|Mask configured to maintain nutrient transport without producing visible diffraction patterns|
US20050046794A1|2003-06-17|2005-03-03|Silvestrini Thomas A.|Method and apparatus for aligning a mask with the visual axis of an eye|
US20050131535A1|2003-12-15|2005-06-16|Randall Woods|Intraocular lens implant having posterior bendable optic|
US7044597B2|2003-12-16|2006-05-16|Bausch & Lomb Incorporated|Multifocal contact lens and method of manufacture thereof|
US8377123B2|2004-11-10|2013-02-19|Visiogen, Inc.|Method of implanting an intraocular lens|
US7976577B2|2005-04-14|2011-07-12|Acufocus, Inc.|Corneal optic formed of degradation resistant polymer|
CA2618021C|2005-08-05|2014-08-05|Visiogen, Inc.|Accommodating diffractive intraocular lens|
US9636213B2|2005-09-30|2017-05-02|Abbott Medical Optics Inc.|Deformable intraocular lenses and lens systems|
EP2392283A3|2006-03-08|2012-04-18|Scientific Optics, Inc.|Method and apparatus for universal improvement of vision|
US8377125B2|2006-04-05|2013-02-19|Anew Optics, Inc.|Intraocular lens with accommodation|
JP5041739B2|2006-06-14|2012-10-03|Hoya株式会社|Intraocular lens|
US7992997B2|2006-09-15|2011-08-09|Carl Zeiss Vision Australia Holdings Limited|Ophthalmic lens element|
US20080161914A1|2006-12-29|2008-07-03|Advanced Medical Optics, Inc.|Pre-stressed haptic for accommodating intraocular lens|
US20080273169A1|2007-03-29|2008-11-06|Blum Ronald D|Multifocal Lens Having a Progressive Optical Power Region and a Discontinuity|
EP2130090A4|2007-03-07|2011-11-02|Pixeloptics Inc|Multifocal lens having a progressive optical power region and a discontinuity|
US20090059163A1|2007-08-30|2009-03-05|Pinto Candido D|Ophthalmic Lens Having Selected Spherochromatic Control and Methods|
US8480734B2|2007-12-27|2013-07-09|Anew Optics, Inc.|Intraocular lens with accommodation|
US8034108B2|2008-03-28|2011-10-11|Abbott Medical Optics Inc.|Intraocular lens having a haptic that includes a cap|
US7753521B2|2008-03-31|2010-07-13|Johnson & Johnson Vision Care, Inc.|Lenses for the correction of presbyopia and methods of designing the lenses|
US8734511B2|2008-10-20|2014-05-27|Amo Groningen, B.V.|Multifocal intraocular lens|
US8292953B2|2008-10-20|2012-10-23|Amo Groningen B.V.|Multifocal intraocular lens|
US8771348B2|2008-10-20|2014-07-08|Abbott Medical Optics Inc.|Multifocal intraocular lens|
US10010405B2|2008-11-26|2018-07-03|Anew Aol Technologies, Inc.|Haptic devices for intraocular lens|
JP5538420B2|2008-11-26|2014-07-02|アニユー・オプテイクス・インコーポレイテツド|Haptic device for intraocular lens|
EP2403429B1|2009-03-05|2017-02-08|AMO Regional Holdings|Multizonal lens with extended depth of focus|
EP2445447A2|2009-06-26|2012-05-02|Abbott Medical Optics Inc.|Accommodating intraocular lenses|
US8343217B2|2009-08-03|2013-01-01|Abbott Medical Optics Inc.|Intraocular lens and methods for providing accommodative vision|
BR112012008079A2|2009-08-13|2016-03-01|Acufocus Inc|corneal graft with nutrient transport structures|
JP5607163B2|2009-08-13|2014-10-15|アキュフォーカス・インコーポレーテッド|Intraocular implant and lens with mask|
US10004593B2|2009-08-13|2018-06-26|Acufocus, Inc.|Intraocular lens with elastic mask|
USD656526S1|2009-11-10|2012-03-27|Acufocus, Inc.|Ocular mask|
US8331048B1|2009-12-18|2012-12-11|Bausch & Lomb Incorporated|Methods of designing lenses having selected depths of field|
US10278810B2|2010-04-29|2019-05-07|Ojo, Llc|Injectable physiologically adaptive intraocular lenses |
WO2013082545A1|2011-12-02|2013-06-06|Acufocus, Inc.|Ocular mask having selective spectral transmission|
CN104768499B|2012-10-17|2017-06-23|华柏恩视觉研究中心|For ametropic eyeglass, device, method and system|
US9201250B2|2012-10-17|2015-12-01|Brien Holden Vision Institute|Lenses, devices, methods and systems for refractive error|
TWI588560B|2012-04-05|2017-06-21|布萊恩荷登視覺協會|Lenses, devices, methods and systems for refractive error|
US9084674B2|2012-05-02|2015-07-21|Abbott Medical Optics Inc.|Intraocular lens with shape changing capability to provide enhanced accomodation and visual acuity|
US9204962B2|2013-03-13|2015-12-08|Acufocus, Inc.|In situ adjustable optical mask|
US9427922B2|2013-03-14|2016-08-30|Acufocus, Inc.|Process for manufacturing an intraocular lens with an embedded mask|
US20170115509A1|2014-08-20|2017-04-27|Johnson & Johnson Vision Care, Inc.|High plus center treatment zone lens design and method for preventing and/or slowing myopia progression|
US9638936B2|2014-08-20|2017-05-02|Johnson & Johnson Vision Care, Inc.|High plus treatment zone lens design for preventing and/or slowing myopia progression|
KR102249250B1|2014-09-09|2021-05-07|스타 서지컬 컴퍼니|Ophthalmic implants with extended depth of field and enhanced distance visual acuity|
US9943403B2|2014-11-19|2018-04-17|Acufocus, Inc.|Fracturable mask for treating presbyopia|
US10687935B2|2015-10-05|2020-06-23|Acufocus, Inc.|Methods of molding intraocular lenses|
US10624735B2|2016-02-09|2020-04-21|Amo Groningen B.V.|Progressive power intraocular lens, and methods of use and manufacture|
EP3426476A4|2016-03-09|2019-11-06|Staar Surgical Company|Ophthalmic implants with extended depth of field and enhanced distance visual acuity|
EP3837571A4|2018-08-17|2021-12-22|Staar Surgical Company|Polymeric composition exhibiting nanogradient of refractive index|
法律状态:
2002-09-06| AS| Assignment|Owner name: BANK OF AMERICA, N.A., NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNORS:ADVANCED MEDICAL OPTICS, INC.;AMO HOLDINGS, LLC;REEL/FRAME:013203/0039 Effective date: 20020621 |
2003-05-21| STCF| Information on status: patent grant|Free format text: PATENTED CASE |
2004-07-28| AS| Assignment|Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, CA Free format text: SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:014910/0546 Effective date: 20040625 |
2006-12-11| FPAY| Fee payment|Year of fee payment: 4 |
2007-04-04| AS| Assignment|Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 14910/0546;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019111/0582 Effective date: 20070402 Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 13203/0039;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019111/0348 Effective date: 20070402 Owner name: AMO HOLDINGS, INC. (FORMERLY KNOWN AS AMO HOLDINGS Free format text: RELEASE OF SECURITY INTEREST AT REEL/FRAME NO. 13203/0039;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:019111/0348 Effective date: 20070402 |
2007-06-29| AS| Assignment|Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,NOR Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:019501/0069 Effective date: 20070402 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:019501/0069 Effective date: 20070402 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NO Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:019501/0069 Effective date: 20070402 |
2009-02-27| AS| Assignment|Owner name: ADVANCED MEDICAL OPTICS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT;REEL/FRAME:022320/0427 Effective date: 20090225 Owner name: ADVANCED MEDICAL OPTICS, INC.,CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT;REEL/FRAME:022320/0427 Effective date: 20090225 |
2009-07-29| AS| Assignment|Owner name: ABBOTT MEDICAL OPTICS INC., CALIFORNIA Free format text: MERGER;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:023234/0277 Effective date: 20090226 Owner name: ABBOTT MEDICAL OPTICS INC.,CALIFORNIA Free format text: MERGER;ASSIGNOR:ADVANCED MEDICAL OPTICS, INC.;REEL/FRAME:023234/0277 Effective date: 20090226 |
2010-12-10| FPAY| Fee payment|Year of fee payment: 8 |
2014-11-24| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
申请号 | 申请日 | 专利标题
US08/592,752|US5702440A|1996-01-26|1996-01-26|Multifocal ophthalmic lens for dim-lighting conditions|
US08/885,987|US5919229A|1996-01-26|1997-06-30|Multifocal opthalmic lens|
US09/221,558|US6221105B1|1996-01-26|1998-12-28|Multifocal ophthalmic lens|
US09/792,893|US6576011B2|1996-01-26|2001-02-26|Multifocal ophthalmic lens|US09/792,893| US6576011B2|1996-01-26|2001-02-26|Multifocal ophthalmic lens|
[返回顶部]